2 research outputs found

    Solving the latency problem in real-time GNSS precise point positioning using open source software

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesReal-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. The GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through PPP. In this research, we investigate the Support Vector Machine (SVR) and RandomForest (RF) as machine learning tools to overcome the latency for clock corrections in the CLK11 and IGS03 products. A BREST International GNSS Services permanent station in France selected as a case study. BNC software implemented in real-time PPP for around three days. Our results showed that the RF method could solve the latency problem for both IGS03 and CLK11. While SVR performed better on the IGS03 than CLK11; thus, it did not solve the latency on CLK11. This research contributes to establishing a simulation of real-time GNSS user who can store and predict clock corrections accordingly to their current observed latency. The self-assessment of the reproducibility level of this study has a rank one out of the range scale from zero to three according to the criteria and classifications are done by (Nüst et al., 2018)

    Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique

    Full text link
    [EN] Real-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through realtime PPP. In this research, we investigate the Support Vector Machine (SVR) machine learning tool to overcome the latency for clock corrections in the IGS03 product. Three days of continuous GNSS observations at BREST permanent station in France were selected as a case study. BNC software was used to generate clock corrections files. Taking as reference the clock correction values without latency. The SVR solution shows a reduction in the standard deviation and range with about 30% and 20%, respectively, in comparison to the latency solution for all satellites except those satellites in GLONASS M block.Qafisheh, MWA.; Martín Furones, ÁE.; Torres-Sospedra, J. (2020). Support Vector Regression Machine Learning Tool to Predict GNSS Clock Corrections in Real-Time PPP Technique. CEUR Workshop Proceedings. 1-8. http://hdl.handle.net/10251/178545S1
    corecore